Data science with PYTHON

  • Module 1: Applied Machine Learning
    Statistical learning vs. Machine learning
    Iteration and evaluation
    Bias-Variance trade-off
  •  
  • Module 2: Introduction to Python
    Understand the basic and Advanced Concepts of Python
    Python language characteristics
    Python IDLE and execution Model
    PYTHON programs on UNIX and Windows platform
    Python Editors and IDEs
  •  
  • Module 3: Python Basics
    Variables
    Keywords
    Buit-in Funtions
    Strings
    Different kind of literals
    Math Operations and Expressions
    Writing to Screen
    String Formatting
    Command Line Parameters
    Flow Control

  • Module 4: Sequences and File Operations
    Text file I/O
    Opening a Text File
    The with Block
    Reading and writing a Text File
    Lists
    Tuples
    Indexing and Slicing
    Iterating through a Sequence
    Functions for All Sequences
    Using enumerate()
    Operators and Keywords for Sequences
    The xrange() Function
    List Comprehensions
    Generator Expressions
    Dictionaries and Sets
  •  
  • Module 5: Create functions, sorting different elements and error handling techniques
    Function Parameters
    Global Variables
    Variable Scope
    Returning Values
    Sorting lists, functions, collections and dictionaries.
    Errors
    Generic Handling and Handling Multiple Exceptions.
    Raising and Re-raising Exceptions
    Import Statement and Search Path Module